

X-Ray Photoelectron Spectroscopy Peak Deconvolution for Lithium-Ion Batteries

C. Caldera and B. Young

Physical Sciences Department Rhode Island College Providence, RI 02908

Lithium ion battery info

- Lithium ions ferry charge between cathode and anode Electron flow in external circuit maintains charge neutrality
- A secondary battery is one that can be recharged
- Li-lon batteries lose capacity over time
 - Solid Electrolyte Interphase (SEI) contributes to and can minimize this
- Chemical reactions at anode dictate SEI composition

Lithium Spectra

Valence Spectra

Carbon Spectra 3.0 2.5 2.5 2.0 2.0 1.0 0.5 0.0 Carbon Spectra Li₂CO₃:LiF ratio — 100:0 — 75:25 — simulated 75:25 — simulated 50:50 — 25:75 — simulated 25:75 — 0:100

XPS info

- Measures elemental composition of a sample, especially useful at surfaces
- Yields plots of counted photoelectrons vs. electron binding energy
- Gives composition in the parts-perthousand range
- Peak deconvolution methods need improvement for analysis of real SEI

$$KE = h\nu - (BE + \Phi)$$

Conclusions

- Pure LiF sample shows multiple Li1s peaks
 - Li₂O probable
- Photon stimulated reactions observed
 - Additional care required for publication
- Proof of concept is obtained for spectral deconvolution via standards
- Valence spectra less affected by photon reactions
 - Additional focus on these going forward

References:

• White Paper: Rechargeable Batteries http://www.maximumpc.com/article/features/white_paper_rechargeable_batteries

This work was supported by US Department of Energy EPSCOR Implementation Grant DE-SC0007074 and by the administration of Rhode Island College.

